APPENDIX C AIRCRAFT NOISE AND EMISSIONS TECHNICAL REPORT

MAY 2, 2022

APPENDIX C

AIRCRAFT NOISE AND EMISSIONS TECHNICAL REPORT

This technical report describes the aircraft noise exposure and emissions for the Charles M Schultz-Sonoma County Airport (STS) Focused Airport Layout Plan Update.

1.1 NOISE MODEL

The methodology for assessing noise exposure included preparing Community Noise Equivalent Leve (CNEL) contours using the Federal Aviation Administration (FAA) Aviation Environmental Design Tool (AEDT) Version 3d. The AEDT works by defining a network of grid points at ground level around an airport. It then selects the shortest distance from each grid point to each flight track and computes the noise exposure generated by each aircraft operation, along each flight track. Corrections are applied for atmospheric acoustical attenuation, acoustical shielding of the aircraft engines by the aircraft itself, and aircraft speed variations. The noise exposure levels for each aircraft are then summed at each grid location. The cumulative noise exposure levels at all grid points are then used to develop noise exposure contours for selected values (e.g. CNEL 65, 70 and 75).

1.2 AEDT INPUT DATA

In the development of CNEL contours, the AEDT uses both default and airport-specific factors. The default factors include engine noise levels, thrust settings, aircraft arrival and departure flight profiles, and aircraft speed. The airport-specific factors include the number of aircraft operations, the type of aircraft, runway use, the assignment of aircraft operations to flight tracks, local meteorological conditions, and operational time (day/evening/night) data. The following describe these airport-specific data.

1.2.1 Meteorological Data

The AEDT accounts for the influences of meteorological conditions on aircraft performance and atmospheric sound absorption. Meteorological conditions affect the transmission of aircraft noise through the air. The AEDT uses temperature and relative humidity to calculate atmospheric absorption coefficients, which in turn are used to adjust aircraft performance and noise propagation. The 10-year average meteorological conditions included in the AEDT for STS are:

Temperature: 54.8° Fahrenheit

» Barometric pressure: 1010.8 millibars

» Relative humidity: 73.5%

1.2.2 Aircraft Operations

The Base and Ultimate scenarios annual operations by category are provided in **Table C1.** As shown, annual operations for the Base scenario total 95,523 (an average of 262 operations per day). The Ultimate scenario operations total 107,860 (an average of 296 per day). For the purposes of preparing CNEL contours, operational data need to be segregated by aircraft type. The Base and Ultimate aircraft fleet of itinerant and local operations are provided in **Tables C2** and **C3**, respectively.

TABLE C1 - ANNUAL AIRCRAFT OPERATIONS

Scenario	Air Carrier	Air Taxi / Commuter	GA Itinerant	GA Local	Military	Total Operations
Base	15,330	7,963	45,160	26,383	687	95,523
Ultimate	21,170	9,685	49,800	26,518	687	107,860

Source: Mead & Hunt, 2021

TABLE CO - ANNUAL AIRCRAFT OPERATIONS - ITINERANT

Representative	AEDT	AEDT	Base	Ultimate
Aircraft Type (s)	Equip ID	ANP	Operations	Operations
Embraer 175	3815	EMB175	5,840	9,490
Boeing 737-800	203	737800	5,110	8,030
Canadair RJ 700/900	2426	CRJ9-ER	4,380	2,920
Airbus A320	2587	A320-232	-	730
Bombardier Challenger 300/350/600	1239	CL600	1,894	2,185
Cessna Citation CJ1/CJ2/CJ3	1288	CNA500	1,415	1,632
Cessna 525 Citation Jet	6060	CNA525C	1,109	1,278
Learjet 35/45/60, Hawker 800	2028	LEAR35	1,094	1,262
Cessna 560 Citation XLS	6065	CNA560XL	1,033	1,192
Cessna 750 Citation X, Falcon 2000	1307	CNA750	975	1,124
Gulfstream G400, Falcon 7X	1920	GIV	970	1,119
Citation II/Bravo	1292	CNA55B	903	1,042
Cessna Citation Sovereign/ Latitude	3047	CNA680	749	864
Cessna Citation Mustang, Phenom 100	6062	CNA510	680	784
Raytheon Premier I, Beechjet400	6159	MU3001	639	737
Dassault Falcon 50/900	1320	FAL900EX	634	732
Cessna 560 Citation V/Ultra	1298	CNA560U	473	546
Gulfstream GV / 500	1923	GV	422	487
Bombardier Global Express	1773	BD-700-1A10	383	442
Israel IAI-1125 Astra/1126 Galaxy	1977	IA1125	302	349
Cessna Citation III	1234	CIT3	199	230
Gulfstream G280	4198	CL601	195	224
Bombardier Global 5000	2573	BD-700-1A11	123	142
Eclipse 500	3159	ECLIPSE500	112	130
King Air 90, Super King Air 300/350	1503	DHC6	5,259	5,873
Pilatus PC12, Cessna 208, Socata TBM7	1489	CNA208	5,192	5,798
Cessna 441, Piper Cheyenne, TBM-850	2580	CNA441	2,342	2,616
Cessna 172/177/206	1261	CNA172	5,043	5,706
Beech 35/36, Cessna 210, DA-40	1276	GASEPV	4,809	5,440

Cirrus SR20/22	1325	COMSEP	3,347	3,787
Cessna 206	3172	CNA206	306	346
Baron 55/58, Cessna 340/414/421P	1196	BEC58P	6,712	7,402
King Air 90, Super King Air 300/350	1546	DHC6	989	994
Rockwell OV-10 Bronco	1457	OV10A	264	265
Lockheed C-130 Hercules	3170	C130E	66	66
Airbus Helicopters H135	4097	EC130	3,140	3,283
Robinson R-44	3161	R44	449	469
Agusta A-109	28	A109	449	469
Bell 429	4125	B429	449	469
Eurocopter MH-65 Dolphin	4120	SA365N	344	344
UH-60 Black Hawk	21	S70	114	115
Lockheed C-130 Hercules	3170	C130E	229	229
		Total	69,140	81,342

Source: Mead & Hunt; RS&H, 2021

TABLE C3 - ANNUAL AIRCRAFT OPERATIONS - LOCAL

Representative	AEDT	AEDT	Base	Ultimate
Aircraft Type (s)	Equip ID	ANP	Operations	Operations
Cessna 172/177/206	1261	CNA172	7,882	7,922
Beech 35/36, Cessna 210, DA-40	1276	GASEPV	7,515	7,554
Cirrus SR20/22	1325	COMSEP	5,231	5,258
Cessna 206	3172	CNA206	479	481
Baron 55/58, Cessna 340/414/421P	1196	BEC58P	5,277	5,304
		Total	26,383	26,518

Source: Mead & Hunt; RS&H, 2021

1.2.3 Time of Day

Aircraft operations modeled in the AEDT are assigned as occurring during daytime (7:00 a.m. to 6:59 p.m.), evening (7:00 p.m. to 9:59 p.m.) or nighttime (10:00 p.m. to 6:59a.m.). The calculation of CNEL includes an additional weight of 4.77 dBA added to those aircraft events that occur during the evening and 10.0 dBA for those occurring at night. The time-of-day percentages of operations modeled are summarized in **Table C4**.

TABLE C4 - TIME OF DAY

Aircraft	Day (7:00am – 6:59pm)	Evening (7:00pm-9:59pm)	Night (10:00pm-6:59am)	Total
	D	epartures		
Embraer 175	89%	11%	-	100%
Boeing 737-800	33%	17%	50%	100%
Canadair RJ 700/900	50%	33%	17%	100%
		Arrivals		
Embraer 175	100%	-	-	100%
Boeing 737-800	57%	29%	14%	100%
Canadair RJ 700/900	50%	33%	17%	100%

	Depar	tures and Arrivals		
GA Jets and Turboprops	91%	7%	2%	100%
GA Piston / Helicopter	83%	12%	5%	100%
Cal Fire	90%	5%	5%	100%
Military	91%	7%	2%	100%

Source: Mead & Hunt; RS&H, 2021

1.2.4 Departure Stage Length

Stage length data is used in the AEDT to represent the various weights of a departing aircraft. For example, a fully loaded aircraft departing on a long-haul flight weighs more on departure than the same aircraft departing on a short-haul flight, due to the weight of the additional fuel needed to travel a longer distance. A heavier aircraft uses more runway length and climbs at a slower rate than lighter aircraft. To account for this, the AEDT contains 10 departure climb profiles (corresponding to different departure weights), depending on the type of aircraft. These profiles represent aircraft origin to destination trip lengths from less than 500 nautical miles (nm) to over 8,500 nautical miles. At STS, the maximum distance traveled on a regular basis is up to 2,500nm. The distances of each stage length in the AEDT are shown in **Table C5**. The commercial aircraft departure stage lengths modeled for the Base and Ultimate scenarios are included in **Table C6**. All general aviation and military operations were modeled Stage Length 1.

TABLE C5 - AEDT STAGE LENGTH DESCRIPTIONS

Stage Length	Distance (Nautical Miles)
1	0-500
2	501-1,000
3	1,001-1,500
4	1,501-2,500

Source: FAA AEDT Tech Manual 3d, March 2021

TABLE C6 - DEPARTURE STAGE LENGTH BY AIRCRAFT TYPE

	INGTH BI AMERAIT III	· -			
Aircraft	Stage Length 1	Stage Length 2	Stage Length 3	Stage Length 4	Total
		Base			
Embraer 175	89%		11%		100%
Boeing 737-800	50%	33%		17%	100%
Canadair RJ 700/900	33%	67%			100%
		Ultimate			
Embraer 175	61%	31%	8%		100%
Boeing 737-800	40%	20%	10%	30%	100%
Canadair RJ 700/900	50%	50%			100%
Airbus A320			100%		100%

Source: Mead & Hunt; RS&H, 2021

1.2.5 Runway Use

Runway use refers to the frequency with which aircraft utilize each runway end for departures and arrivals. The more often a runway is used, the more noise is generated in areas located off each end of that runway. Wind direction and speed dictate the runway directional use (or flow) of airports. From a safety and operational standpoint, it is preferable for aircraft to arrive and depart into the wind. Wind direction changes may also necessitate the need to switch an airport's flow. Overall modeled runway use is included in **Table C7**.

TABLE C7 - MODELED RUNWAY USE

02	20	14	32	Total
De _l	partures			
-	2%	58%	40%	100%
-	10%	55%	35%	100%
3%	14%	55%	28%	100%
3%	33%	36%	28%	100%
		60%	40%	100%
А	rrivals			
-	-	55%	45%	100%
-	1%	42%	57%	100%
1%	4%	50%	45%	100%
1%	4%	65%	30%	100%
		60%	40%	100%
Touc	h-and-Go			
3%	12%	57%	28%	100%
	De 1% 1% Touc	Departures - 2% - 10% 3% 14% 3% 33% Arrivals 1% 1% 4% 1% 4% Touch-and-Go	Departures - 2% 58% - 10% 55% 3% 14% 55% 3% 33% 36% - 60% Arrivals 55% - 1% 42% 1% 4% 50% 1% 4% 65% - 60% Touch-and-Go	Departures - 2% 58% 40% - 10% 55% 35% 3% 14% 55% 28% 3% 33% 36% 28% 60% 40% Arrivals 55% 45% - 1% 42% 57% 1% 4% 50% 45% 1% 4% 65% 30% Touch-and-Go

Source: Mead & Hunt; RS&H, 2021

1.2.6 Modeled Aircraft Flight Tracks

The location of flight tracks is an important factor in determining the geographic distribution of noise on the ground. The AEDT uses airport-specific ground tracks and vertical flight profiles to compute three-dimensional flight paths for each modeled aircraft operation. The "default" AEDT vertical profiles, which consist of altitude, speed, and thrust settings, are compiled from data provided by aircraft manufacturers. The flight tracks and track use estimates were developed from input by STS air traffic control tower personnel. The modeled Base scenario AEDT flight tracks for north flow and south flow are depicted on **Figures C1** and **C2** respectively. The modeled flight track use percentages are shown in **Table C8**. For modeling purposes, Cal Fire and military operations were modeled consistent with the commercial aircraft. The flight tracks for the Ultimate scenario were only slightly modified to have aircraft departures match the new Runway 20 end. Arrival flight tracks to Runway 20 remained consistent with the Base scenario with aircraft arriving to the displaced threshold. Helicopters were modeled operating from a helipad on the east side of the airfield.

TABLE C8 - MODELED FLIGHT TRACK USE

			Track II			
D 0	0001		North Flow	Departures		
Runway 2	02D1					Sum
Commercial	100%					100%
GA Jet / Turboprop	100%					100%
GA Piston	100%					100%
Runway 32	32D1	32D2	32D3	32D4		
Commercial	40%	60%				100%
GA Jet / Turboprop	40%	50%	5%	5%		100%
GA Piston	30%	20%	30%	20%		100%
			North Flo	w Arrivals		
Runway 2	02A1					
Commercial	100%					100%
GA Jet / Turboprop	100%					100%
GA Piston	100%					100%
Runway 32	32A1					
Commercial	100%					100%
GA Jet / Turboprop	100%					100%
GA Piston	100%					100%
			South Flow	Departures		
Runway 20	20D1	20D2	20D3			
Commercial	50%	25%	25%			100%
GA Jet / Turboprop	50%	25%	25%			100%
GA Piston	40%	20%	40%			100%
			4.50			
Runway 14	14D1	14D2	14D3	14D4	14D5	4000
Commercial	35%	10%	25%	-	30%	100%
GA Jet / Turboprop	30%	15%	25%	5%	25%	100%
GA Piston	20%	20%	20%	20% w Arrivals	20%	100%
Runway 20	20A1		South Fio	w Arrivais		
Commercial	100%					100%
GA Jet / Turboprop	100%					100%
GA Piston	100%					100%
GA I ISTOIT	10070					10070
Runway 14	14A1	14A2	14A3	14A4	14A5	
Commercial	40%		50%	10%		100%
GA Jet / Turboprop	40%		50%	10%		100%
GA Piston	20%	30%	5%	5%	40%	100%

Legend Departure Flight Track Arrival Flight Track Touch and Go Flight Track Airport Property Boundary

FIGURE C1 - MODELED AIRCRAFT FLIGHT TRACKS - NORTH FLOW

Source: STS ATCT Personnel; RS&H, 2021

HDSW Legend Departure Flight Track Arrival Flight Track Touch and Go Flight Track Airport Property Boundary Feet

FIGURE C2 - MODELED AIRCRAFT FLIGHT TRACKS - SOUTH FLOW

Source: STS ATCT Personnel; RS&H, 2021

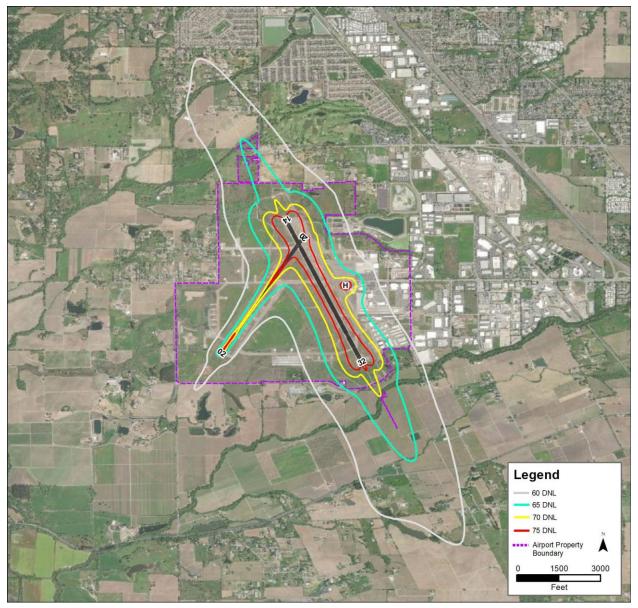
1.3 BASE SCENARIO CNEL CONTOURS

The Base scenario 60-75 CNEL contours are provided on **Figure C3**. **Table C9** identifies the areas within the CNEL contour ranges. As shown in the table, the total area within the 60 and greater CNEL contour is approximately 1,394 acres. The size of the contours are largest off the ends of Runway 14-32, which is the highest used runway at STS.

TABLE C9 - CNEL CONTOUR AREAS - BASE

CNEL Range	Area (acres)
60 - 65	887
65 - 70	304
70 - 75	114
75+	89
Total	1,394

Source: RS&H, 2021


1.4 ULTIMATE SCENARIO CNEL CONTOURS

The Ultimate scenario 60-75 CNEL contours are provided on **Figure C4**. **Table C10** identifies the areas within the CNEL contour ranges. As shown in the table, the total area within the 60 and greater CNEL contour is approximately 1,852 acres. The contours are slightly larger than the Base scenario due to the greater number of operations forecast at the airport with the Ultimate scenario.

TABLE C10 - CNEL CONTOUR AREAS – ULTIMATE

CNEL Range	Area (acres)
60 - 65	1,185
65 - 70	415
70 - 75	140
75+	112
Total	1,852

FIGURE C3 - BASE SCENARIO 60-75 CNEL CONTOURS

Legend 60 DNL 65 DNL 70 DNL 75 DNL Airport Proper Boundary 1500

FIGURE C4 - ULTIMATE SCENARIO 60-75 CNEL CONTOURS

1.5 AIRCRAFT EMISSIONS

The operational emissions inventory was prepared for the aircraft operations, which are by far the largest contributor to emissions at an airport, for the Base and Ultimate Scenarios. Other sources that contribute to emissions at an airport include aircraft auxiliary power units, ground support equipment, motor vehicles and stationary sources. The aircraft emissions were computed using the AEDT version 3d. The inventories were prepared for emissions of CO, NO_x , SO_x , $PM_{10}/PM_{2.5}$ and VOC. The aircraft annual operations and fleet are shown in **Table C11**. The runway use, flight tracks and stage lengths used to model the emissions were the same as the data used in the noise modeling effort. **Table C12** presents the aircraft operational emission inventories for the Base and Ultimate scenarios.

TABLE C11 - BASE AND ULTIMATE SCENARIOS ANNUAL AIRCRAFT OPERATIONS

Representative	AEDT	AEDT	Base	Ultimate
Aircraft Type (s)	Equip ID	ANP	Operations	Operations
Embraer 175	3815	EMB175	5,840	9,490
Boeing 737-800	203	737800	5,110	8,030
Canadair RJ 700/900	2426	CRJ9-ER	4,380	2,920
Airbus A320	2587	A320-232	-	730
Bombardier Challenger 300/350/600	1239	CL600	1,894	2,185
Cessna Citation CJ1/CJ2/CJ3	1288	CNA500	1,415	1,632
Cessna 525 Citation Jet	6060	CNA525C	1,109	1,278
Learjet 35/45/60, Hawker 800	2028	LEAR35	1,094	1,262
Cessna 560 Citation XLS	6065	CNA560XL	1,033	1,192
Cessna 750 Citation X, Falcon 2000	1307	CNA750	975	1,124
Gulfstream G400, Falcon 7X	1920	GIV	970	1,119
Citation II/Bravo	1292	CNA55B	903	1,042
Cessna Citation Sovereign/ Latitude	3047	CNA680	749	864
Cessna Citation Mustang, Phenom 100	6062	CNA510	680	784
Raytheon Premier I, Beechjet400	6159	MU3001	639	737
Dassault Falcon 50/900	1320	FAL900EX	634	732
Cessna 560 Citation V/Ultra	1298	CNA560U	473	546
Gulfstream GV / 500	1923	GV	422	487
Bombardier Global Express	1773	BD-700-1A10	383	442
Israel IAI-1125 Astra/1126 Galaxy	1977	IA1125	302	349
Cessna Citation III	1234	CIT3	199	230
Gulfstream G280	4198	CL601	195	224
Bombardier Global 5000	2573	BD-700-1A11	123	142
Eclipse 500	3159	ECLIPSE500	112	130
King Air 90, Super King Air 300/350	1503	DHC6	5,259	5,873
Pilatus PC12, Cessna 208, Socata TBM7	1489	CNA208	5,192	5,798
Cessna 441, Piper Cheyenne, TBM-850	2580	CNA441	2,342	2,616
Cessna 172/177/206	1261	CNA172	12,926	13,627
Beech 35/36, Cessna 210, DA-40	1276	GASEPV	12,325	12,994
Cirrus SR20/22	1325	COMSEP	8,578	9,045
Cessna 206	3172	CNA206	785	827
Baron 55/58, Cessna 340/414/421P	1196	BEC58P	11,989	12,706

King Air 90, Super King Air 300/350	1546	DHC6	989	994
Rockwell OV-10 Bronco	1457	OV10A	264	265
Lockheed C-130 Hercules	3170	C130E	66	66
Airbus Helicopters H135	4097	EC130	3,140	3,283
Robinson R-44	3161	R44	449	469
Agusta A-109	28	A109	449	469
Bell 429	4125	B429	449	469
Eurocopter MH-65 Dolphin	4120	SA365N	344	344
UH-60 Black Hawk	21	S70	114	115
Lockheed C-130 Hercules	3170	C130E	229	229
			95,523	107,860

Source: Mead & Hunt; RS&H, 2021

TABLE C12 - AIRCRAFT EMISSIONS (TONS PER YEAR)

Scenario	CO	NO _x	SO _x	PM_{10}	PM _{2.5}	VOC
BASE	463.4	65.2	8.7	1.0	1.0	47.6
ULTIMATE	522.9	92.4	11.6	1.3	1.3	55.4